

DIAGNOSI E MIGLIORAMENTO DEI CONSUMI ENERGETICI DEGLI EDIFICI: BENEFICI AMBIENTALI DEL RISPARMIO ENERGETICO

Ambiente e sostenibilità per la tua Azienda sono un costo? noi lo trasformiamo in ricchezza

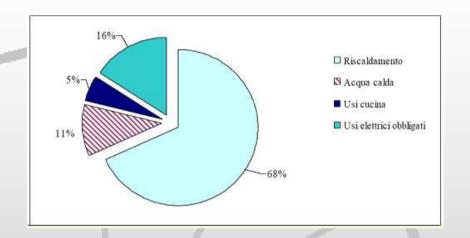
Consulenza di Direzione

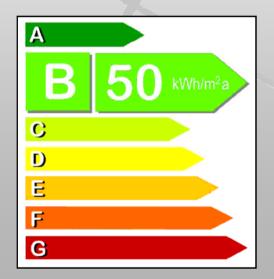
Ambiente & Innovazione

Sistemi di Gestione

Aziendale

Relatore: Andrea Zanfini




RISPARMIO ENERGETICO NEGLI EDIFICI

- Quando si parla di inquinamento urbano la componente legata al settore civile assume un peso sempre maggiore.
- Relazione diretta tra consumi di energia e inquinamento ed emissioni di CO₂

Cause degli alti consumi per il riscaldamento:

- Bassa efficienza degli impianti di riscaldamento
- Scarso isolamento termico degli edifici.

Obiettivi del risparmio energetico negli edifici:

- Ridurre i consumi energetici, soprattutto da combustibili fossili
- Diminuire la spesa economica per l'energia
- Ridurre le emissioni prodotte a livello locale e nazionale

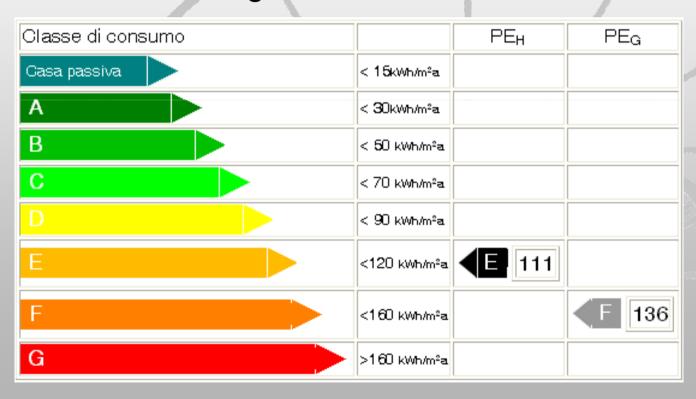
Strumenti per il risparmio energetico:

- d.lgs. 192/05 successivamente modificato dal d.lgs. 311/06 (edifici nuovi e ristrutturazioni)
- > Diagnosi energetica degli edifici e soluzioni di risparmio energetico (edifici esistenti)

OBIETTIVO DELLO STUDIO

Diagnosi energetica della Camera di Commercio di Forlì - Cesena:

- Caratteristiche dell'edificio
- Diagnosi energetica dell'edificio (valutazione dei fabbisogni di energia termica ed elettrica) mediante anche analisi termografiche
- Valutazione delle emissioni dei principali inquinanti e/o gas serra prodotti

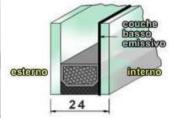

Analisi dell'applicazione di ipotetiche soluzioni di risparmio energetico al fine di:

- Valutare la variazione dei fabbisogni energetici dell'edificio
- Valutare la variazione delle emissioni di inquinanti

METODOLOGIA BESTCLASS – OUTPUT

Fabbisogno energetico specifico: $PE = Q/A_U$ (in kWh/m² * anno)

Andrea Zanfini



IPOTESI DI RISPARMIO ENERGETICO

SOLUZIONE 1

 Sostituzione totale delle attuali finestre a vetro singolo con vetrocamera basso emissivo con argon

> Sostituzione totale degli infissi di metallo non a taglio termico con infissi sempre in metallo, ma a taglio termico e a tenuta.

SOLUZIONE 2

 Messa in posa di un cappotto isolante esterno da applicare alla parte nuova dell'edificio

Questo intervento non rappresenta un'alternativa al primo, ma quanto più un'integrazione ad esso.

RISULTATI SOLUZIONI PER IL RISPARMIO ENERGETICO

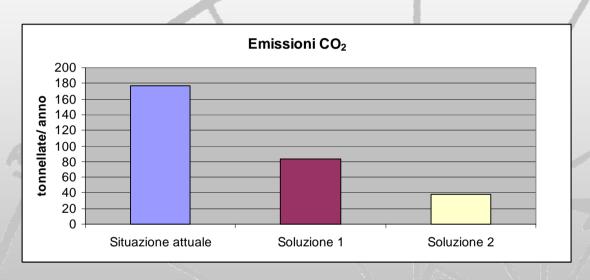
Classe di consumo		Situazione attuale		Soluzione 1		Soluzione 2	
		PEH	PE_G	PEH	PEG	PEH	PEG
Casa passiva	< 15kWh/m²a						
A	< 30kWh/m²a					▲ 23	A 29
В	< 50 kWh/m²a						
С	< 70 kWh/m²a			€ 52	€ 64		
D	< 90 kWh/m²a						
Е	<120 kWh/m²a	111					
F	<160 kWh/m²a		1 36				
G	>160 kWh/m²a						

La riduzione dei fabbisogni energetici si riflette in un miglioramento della classe di prestazione energetica.

BENEFICI AMBIENTALI DEL RISPARMIO ENERGETICO

Gli impianti di riscaldamento contribuiscono in maniera significativa alla totalità delle emissioni prodotte, soprattutto in ambito urbano.

FE
$$(g_{inquinante}/ kWh) * (Q_{EPH} + Q_{WP})$$


Inquinanti considerati:

- > CO₂
- > NO_x
- CO
- > PM₁₀
- VOC

BENEFICI AMBIENTALI DEL RISPARMIO ENERGETICO – CO₂

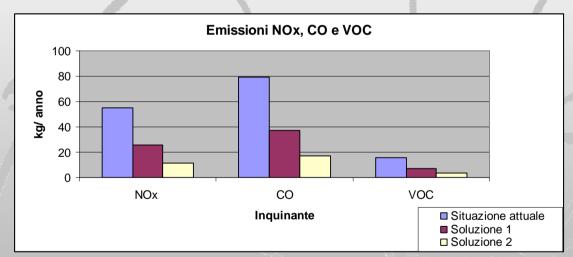
200 (gCO_2/kWh) * ($Q_{EPH} + Q_{WP}$)

Emissioni CO₂

> Situazione attuale: 176,7 t

Soluzione 1: 83,5 t

Soluzione 2: 37,7 t



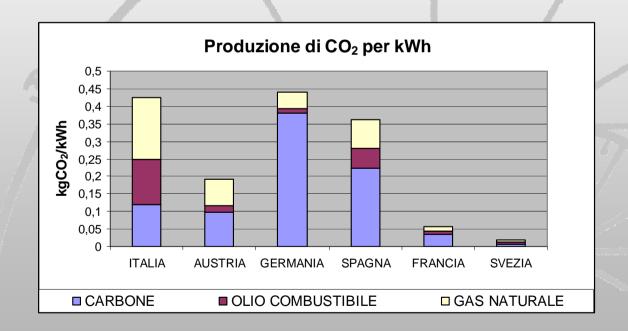
BENEFICI AMBIENTALI DEL RISPARMIO ENERGETICO NOx, CO e VOC

Fattori di emissione:

- NOx → Libretto di caldaia
- CO, VOC e PM₁₀ → manuale dei fattori di Emissione Nazionali

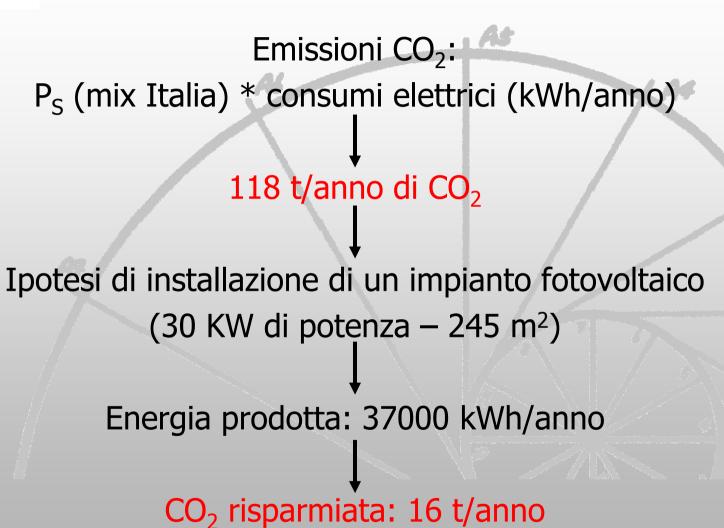
Inquinante	Metano
NOX (kg/GJ)	0,05
SO2 (kg/GJ)	-
PM10 (g/GJ)	0,1
VOC (kg/GJ)	0,005
GO (kg/GJ)	0,025

Variazioni percentuali rispetto alla situazione attuale:

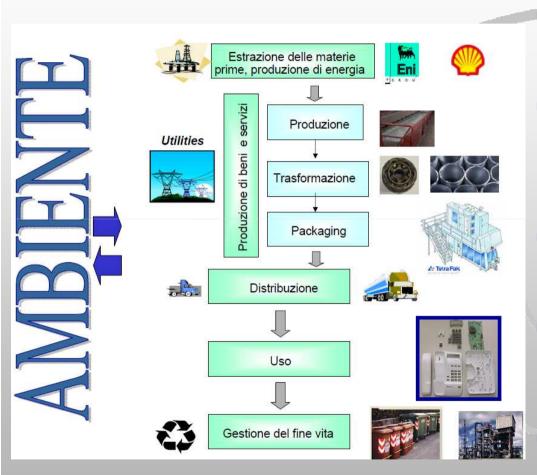

- Situazione attuale: $NO_x = 54.8 \text{ kg/anno} CO = 79.2 \text{ kg/anno} VOC = 15.8 \text{ kg/anno}$
 - Soluzione $1 \rightarrow 52\%$
 - > Soluzione 2 → 78%

Emissioni PM₁₀ poco significative

CONSUMI ELETTRICI E MIX ENERGETICO


Mix Energetico:

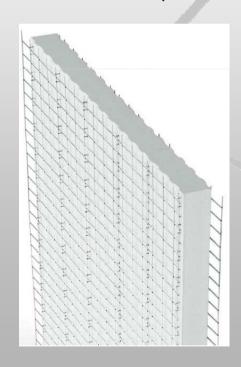
$$P_s$$
 (mix) = (P_s carbone * $fr_{carbone}$) + (P_s olio * fr_{olio}) + (P_s gas * fr_{gas})


BENEFICI AMBIENTALI DELLA RIDUZIONE DEI CONSUMI ELETTRICI

Andrea Zanfini

L'importanza dell'approccio LCA nell'edilizia

Perché condurre uno studio LCA?


- Per ottenere informazioni dettagliate ed affidabili di tipo energetico/ambientali relative al proprio prodotto/processo;
- Per facilitare l'adeguamento dei propri processi a cambiamenti nelle specifiche di prodotto o nella legislazione ambientale (Certificazione energetica degli edifici, direttiva EUP, ecc);
- Valutare l'effettivo risparmio energetico considerando l'intero ciclo di vita delle soluzioni costruttive utilizzate;
- Comparare diversi prodotti e/o materiali ed indirizzare quindi le scelte dei progettisti e dei consumatori sulle migliori soluzioni di risparmio energetico;
- Aderire ad azioni di etichettatura ecologica (EPD, Certificazione LEED, % del materiale riciclato, ecc.) o di supporto a SGA.

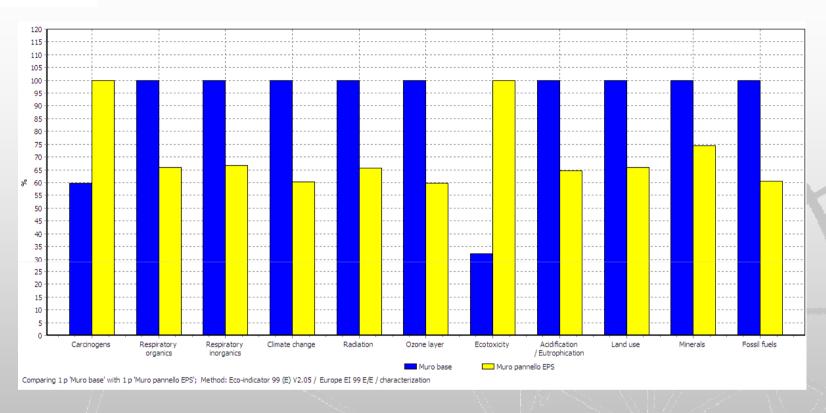
LCA: caso studio

Lo studio effettuato prevede uno screening di LCA comparativo tra due soluzioni costruttive utilizzate in ambito industriale:

1) Pannello di polistirene sinterizzato (EPS) – 20cm U = 0.189 W/m² K

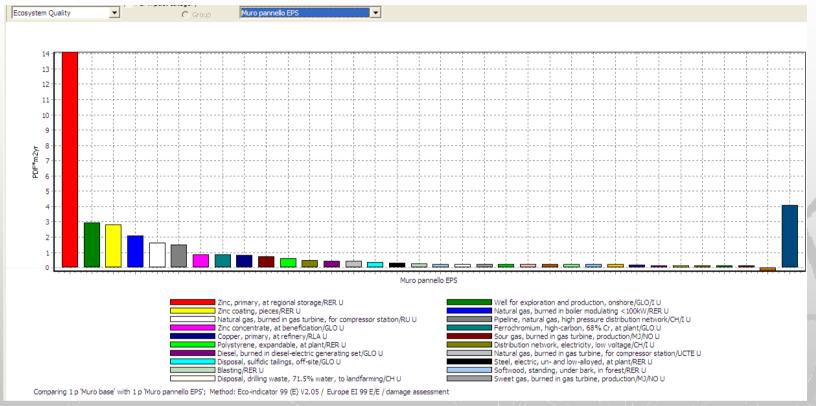
2) Pannello prefabbricato in CLS e polistirolo espanso – 20cm

 $U = 0.32 \text{ W/m}^2 \text{ K}$


POLISTIROLO ESPANSO

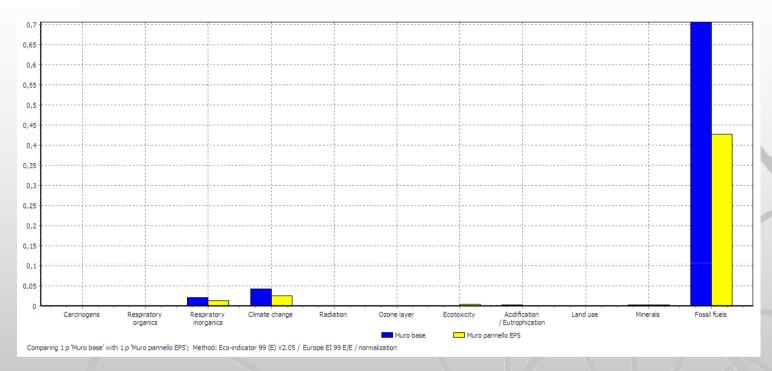
100÷125

- Unità funzionale utilizzata per lo studio: 1 m² di pannello.
- Assunzioni: messa in posa comparabile.
- Confini del sistema: dal recepimento dei materiali alla fase d'uso compresa esclusa la fase del fine vita.


LCA: risultati (1)

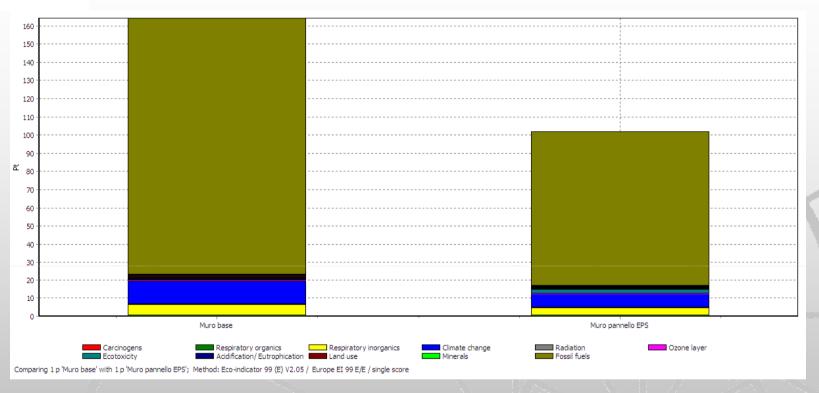
In quasi tutte le categorie d'impatto il pannello EPS, che utilizza una tecnologia più innovativa risulta essere meno impattante, tranne due, formazione di sostanze cancerogene ed eco-tossicità terrestre.

LCA: risultati (2)


All'interno della componente "Qualità dell'ecosistema", in cui risulta maggiormente impattante il pannello EPS abbiamo valutato quali processi creassero gli impatti maggiori e si può notare che è strettamente legato al processo di zincatura della rete metallica.

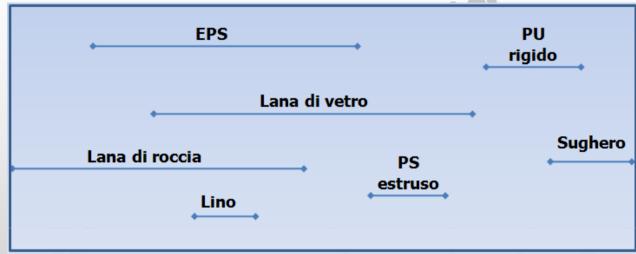
In ottica di Eco-design sarebbe interessante valutare, essendo questo un hot-spot, l'utilizzo di materiali alternativi all'acciaio zincato.

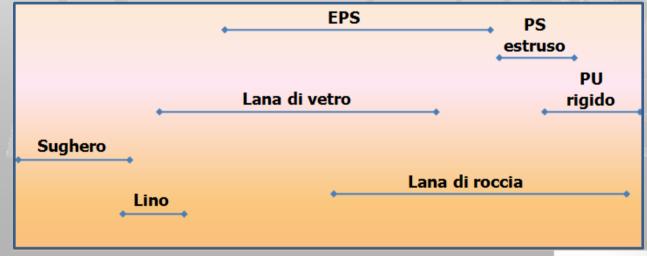
Andrea Zanfini


LCA: risultati (3)

Il secondo step di analisi dei risultati ottenuti consiste nella normalizzazione dei dati per valutare quali categorie d'impatto fossero maggiormente significative. Da questa analisi è risultata che la categoria più impattante è rappresentata dal consumo di combustibili fossili.

LCA: risultati (5)


In conclusione, sommando e comparando gli impatti valutati per le due tipologie costruttive è possibile vedere come il pannello EPS impatta circa il 40%rispetto alla soluzione tradizionale.


Materiali isolanti: la scelta corretta

Risultati energetici – ambientali (u.f. = $1 \text{ m}^2\text{K/W}$)

Energie spese

Riscaldamento globale

Andrea Zanfini

EQO Srl

Galleria U. Bassi, 1 – 40121 Bologna Tel. 051 270946 Fax 051 2960100

zanfini@eqo.it

www.comunicazioneambientale.com

www.eqo.it